Bonjour à tous,
IL y a environ 33 ans j'avais fait ce cours de mécanique des milieux continus, appliqué aux fluides en DEA. Je l'ai fait pendant 5 ans. C'est ici un support de cours. A l'époque tout se faisait sur slides et on projetait sur un écran. Etant support de cours il n'y a aucune démonstration, celles ci étaient faites au tableau. Toutes les démonstrations n'étaient pas effectuées, certaines trop complexes étaient admises. Ce support de cours nous donne exactement ce que l'on fait aussi en solide, ce sont les mêmes équations et le même cheminement. La seule petite différence avec les fluides vient des lois de comportement, mais les conditions sur ces lois sont absolument identiques et la thermo est également nécessaire. Sur le plan mathématique ce support est nul, archi nul (un massacre), car la géométrie Euclidienne est appliquée alors qu'elle n'est plus valable lorsque les structures sont courbes (arcs, coques...etc) mais il fallait être compris par les élèves, donc je le disais au début du cours, et on employait cette mauvaise méthode tout de même.
Je voulais simplement montrer qu'il est très difficile de calculer précisément les contraintes (je devrais dire vitesses de contraintes et vitesses de déplacements) et les déplacements (c'est en fait un job qui prend toute une vie) et le couplage fluide structure est lui aussi difficile. Ce sont plusieurs auteurs (Truesdell, Noll....) qui aux alentours des années 60 ont révolutionné la théorie en donnant les mêmes équations et surtout le même lien pour y parvenir en solide comme en fluide. Depuis environ 30 ans dans certaines écoles et en fac ces théories sont enseignées.
La bonne vieille RDM,( qu'il ne faut pas rejeter selon moi car elle a permis de faire pas mal de calculs, très inexacts, très très simples certes, mais on ne disposait de rien d'autres) n'est plus du tout valable, souvent très très incorrecte, tout est totalement différent, bien plus complexe mais aussi très très prêt de la réalité (avec les méthodes par éléments finis ou volumes finis on est encore parfois assez éloigné mais par rapport à la RDM....!!!)
Je me rends compte que ce document, sans explications orales, est assez indigeste, mais refaire le cours serait trop long, surtout par voie informatique. J’ai simplement voulu vous montrer combien difficile est la formulation des éléments finis fluide (ou solide), et que malheureusement il est souvent vain de trouver la bonne solution du premier coup.
Ce qu'il faut retenir c'est que l'usinage implique obligatoirement l'utilisation des grandes déformations avec un couplage fluide structure, bien entendu avec la température, et que celles ci pour l'usinage, sont encore trop gourmandes en temps calcul. Donc théorie en grande partie maîtrisée depuis 20 ans, mais "impossible à effectuer en 3D aujourd'hui" (et même en 2D cela pose des problèmes de temps calcul).......mais cela viendra car je n'ai pas oublié qu'il y a 40 ans la méca des fluides était impossible à exécuter sur les ordinateurs.
Je n'ai pas abordé ici la recherche de solutions qui prends énormément de temps. Les équations ci-dessus sont selon moi assez simples à trouver, avec quelques connaissances en calcul différentiel absolu, par contre les méthodes d'analyse numérique pour résoudre ces équations sont des plus complexes, car on se trouve devant une équation avec un terme non linéaire (le terme de transport convection) et un terme du deuxième ordre concernant la viscosité. Je sais aussi que le problème de l'existence et de l'unicité de solution n'est toujours pas démontré avec les équations de Navier Stockes, à mon avis celui ou celle qui fera ces démonstrations mériteront largement la médaille Fields.
A +
CALCULATE
IL y a environ 33 ans j'avais fait ce cours de mécanique des milieux continus, appliqué aux fluides en DEA. Je l'ai fait pendant 5 ans. C'est ici un support de cours. A l'époque tout se faisait sur slides et on projetait sur un écran. Etant support de cours il n'y a aucune démonstration, celles ci étaient faites au tableau. Toutes les démonstrations n'étaient pas effectuées, certaines trop complexes étaient admises. Ce support de cours nous donne exactement ce que l'on fait aussi en solide, ce sont les mêmes équations et le même cheminement. La seule petite différence avec les fluides vient des lois de comportement, mais les conditions sur ces lois sont absolument identiques et la thermo est également nécessaire. Sur le plan mathématique ce support est nul, archi nul (un massacre), car la géométrie Euclidienne est appliquée alors qu'elle n'est plus valable lorsque les structures sont courbes (arcs, coques...etc) mais il fallait être compris par les élèves, donc je le disais au début du cours, et on employait cette mauvaise méthode tout de même.
Je voulais simplement montrer qu'il est très difficile de calculer précisément les contraintes (je devrais dire vitesses de contraintes et vitesses de déplacements) et les déplacements (c'est en fait un job qui prend toute une vie) et le couplage fluide structure est lui aussi difficile. Ce sont plusieurs auteurs (Truesdell, Noll....) qui aux alentours des années 60 ont révolutionné la théorie en donnant les mêmes équations et surtout le même lien pour y parvenir en solide comme en fluide. Depuis environ 30 ans dans certaines écoles et en fac ces théories sont enseignées.
La bonne vieille RDM,( qu'il ne faut pas rejeter selon moi car elle a permis de faire pas mal de calculs, très inexacts, très très simples certes, mais on ne disposait de rien d'autres) n'est plus du tout valable, souvent très très incorrecte, tout est totalement différent, bien plus complexe mais aussi très très prêt de la réalité (avec les méthodes par éléments finis ou volumes finis on est encore parfois assez éloigné mais par rapport à la RDM....!!!)
Je me rends compte que ce document, sans explications orales, est assez indigeste, mais refaire le cours serait trop long, surtout par voie informatique. J’ai simplement voulu vous montrer combien difficile est la formulation des éléments finis fluide (ou solide), et que malheureusement il est souvent vain de trouver la bonne solution du premier coup.
Ce qu'il faut retenir c'est que l'usinage implique obligatoirement l'utilisation des grandes déformations avec un couplage fluide structure, bien entendu avec la température, et que celles ci pour l'usinage, sont encore trop gourmandes en temps calcul. Donc théorie en grande partie maîtrisée depuis 20 ans, mais "impossible à effectuer en 3D aujourd'hui" (et même en 2D cela pose des problèmes de temps calcul).......mais cela viendra car je n'ai pas oublié qu'il y a 40 ans la méca des fluides était impossible à exécuter sur les ordinateurs.
Je n'ai pas abordé ici la recherche de solutions qui prends énormément de temps. Les équations ci-dessus sont selon moi assez simples à trouver, avec quelques connaissances en calcul différentiel absolu, par contre les méthodes d'analyse numérique pour résoudre ces équations sont des plus complexes, car on se trouve devant une équation avec un terme non linéaire (le terme de transport convection) et un terme du deuxième ordre concernant la viscosité. Je sais aussi que le problème de l'existence et de l'unicité de solution n'est toujours pas démontré avec les équations de Navier Stockes, à mon avis celui ou celle qui fera ces démonstrations mériteront largement la médaille Fields.
A +
CALCULATE